/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include "stm32746g_discovery_ts.h"
#include "stm32746g_discovery.h"
#include "stm32746g_discovery_sdram.h"
#define CIRCLE_RADIUS 30
#define BUFFER_SIZE 20
TS_StateTypeDef TS_State;
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c3;
UART_HandleTypeDef huart1;
SDRAM_HandleTypeDef hsdram1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C3_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_FMC_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/*
int _write(int32_t file, uint8_t *ptr, int32_t len)
{
HAL_UART_Transmit_IT(&huart1, ptr,len);
return len;
}*/
int __io_putchar(int ch) {
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);
return ch;
}
void Touchscreen_demo (void)
{
uint8_t status = 0;
uint16_t x, y;
uint8_t text[30];
uint8_t radius;
status = BSP_TS_Init(480, 272);
if (status != TS_OK) {
printf("ERROR - Touchscreen cannot be initialized.\r\n");
}
while (1)
{
if (status == TS_OK)
{
/* Check in polling mode in touch screen the touch status and coordinates */
/* if touch occurred */
BSP_TS_GetState(&TS_State);
if(TS_State.touchDetected)
{
/* Get X and Y position of the touch post calibrated */
x = TS_State.touchX[0];
y = TS_State.touchY[0];
sprintf((char*)text, "Touch detected : %d", TS_State.touchDetected);
printf("%s\r\n", text);
/* Display 1st touch detected coordinates */
printf("1[%d,%d]\r\n", x, y);
if (TS_State.touchDetected >= 2) /* Display 2nd touch detected coordinates if applicable */
{
printf("2[%d,%d]\r\n", TS_State.touchX[1], TS_State.touchY[1]);
}
if (TS_State.touchDetected >= 3) /* Display 3rd touch detected coordinates if applicable */
{
printf("3[%d,%d]\r\n", TS_State.touchX[2], TS_State.touchY[2]);
}
if (TS_State.touchDetected >= 4) /* Display 4th touch detected coordinates if applicable */
{
printf("4[%d,%d]\r\n", TS_State.touchX[3], TS_State.touchY[3]);
}
if (TS_State.touchDetected >= 5) /* Display 5th touch detected coordinates if applicable */
{
printf("5[%d,%d]\r\n", TS_State.touchX[4], TS_State.touchY[4]);
}
/* Calculate circle radius to fill according to finger pressure applied on screen (weight) */
radius = TS_State.touchWeight[0]/3;
if (radius > CIRCLE_RADIUS) {
radius = CIRCLE_RADIUS;
} else if (radius < 1) {
radius = 1;
}
printf("touchWeight : %d\r\n", radius);
} /* of if(TS_State.touchDetected) */
}
HAL_Delay(100);
}
}
void sdram_test(void)
{
int i = 0;
uint32_t error = 0;
uint32_t srcBuf[BUFFER_SIZE];
uint32_t dstBuf[BUFFER_SIZE];
for (i=0; i<BUFFER_SIZE; i++ ) {
srcBuf[i] = i;
}
/* Write data to the SDRAM memory */
BSP_SDRAM_WriteData(SDRAM_DEVICE_ADDR, srcBuf, BUFFER_SIZE);
printf("Write data to the SDRAM memory\r\n");
/* Read back data from the SDRAM memory */
BSP_SDRAM_ReadData(SDRAM_DEVICE_ADDR, dstBuf, BUFFER_SIZE);
printf("Read back data from the SDRAM memory\r\n");
for (i=0; i<BUFFER_SIZE; i++ ) {
if(srcBuf[i] != dstBuf[i])
error++;
}
if(error == 0)
printf("SDRAM Test: PASSED\r\n");
else
printf("SDRAM Test: FAILED\r\n");
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C3_Init();
MX_USART1_UART_Init();
MX_FMC_Init();
/* USER CODE BEGIN 2 */
printf("hello\r\n");
//Touchscreen_demo();
BSP_SDRAM_Init();
sdram_test();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 432;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Activate the Over-Drive mode
*/
if (HAL_PWREx_EnableOverDrive() != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C3 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C3_Init(void)
{
/* USER CODE BEGIN I2C3_Init 0 */
/* USER CODE END I2C3_Init 0 */
/* USER CODE BEGIN I2C3_Init 1 */
/* USER CODE END I2C3_Init 1 */
hi2c3.Instance = I2C3;
hi2c3.Init.Timing = 0x20404768;
hi2c3.Init.OwnAddress1 = 0;
hi2c3.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c3.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c3.Init.OwnAddress2 = 0;
hi2c3.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c3.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c3.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c3) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c3, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c3, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C3_Init 2 */
/* USER CODE END I2C3_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/* FMC initialization function */
static void MX_FMC_Init(void)
{
/* USER CODE BEGIN FMC_Init 0 */
/* USER CODE END FMC_Init 0 */
FMC_SDRAM_TimingTypeDef SdramTiming = {0};
/* USER CODE BEGIN FMC_Init 1 */
/* USER CODE END FMC_Init 1 */
/** Perform the SDRAM1 memory initialization sequence
*/
hsdram1.Instance = FMC_SDRAM_DEVICE;
/* hsdram1.Init */
hsdram1.Init.SDBank = FMC_SDRAM_BANK1;
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_16;
hsdram1.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_2;
hsdram1.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;
hsdram1.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
/* SdramTiming */
SdramTiming.LoadToActiveDelay = 2;
SdramTiming.ExitSelfRefreshDelay = 7;
SdramTiming.SelfRefreshTime = 4;
SdramTiming.RowCycleDelay = 6;
SdramTiming.WriteRecoveryTime = 2;
SdramTiming.RPDelay = 2;
SdramTiming.RCDDelay = 2;
if (HAL_SDRAM_Init(&hsdram1, &SdramTiming) != HAL_OK)
{
Error_Handler( );
}
/* USER CODE BEGIN FMC_Init 2 */
/* USER CODE END FMC_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOI_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOI, GPIO_PIN_1, GPIO_PIN_RESET);
/*Configure GPIO pin : PI1 */
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
'Project > STM32F746G-DISCO' 카테고리의 다른 글
STM32F746G I2C Touchscreen 특정 좌표 (0) | 2023.02.13 |
---|---|
STM32F746G BSP 드라이버 적용방법 (TFT LCD) (0) | 2023.02.09 |
STM32F746G USART 제어 (0) | 2023.02.09 |
STM32F746G TFT Touch 좌표 확인하기 (0) | 2022.08.24 |
STM32F746G-DISCO보드 구매 (0) | 2019.05.26 |